For two models in an xpose_set
, these functions are useful in comparing individual
and population predictions
Usage
ipred_vs_ipred(
xpdb_s,
...,
.inorder = FALSE,
type = "pls",
title = "Individual prediction comparison | @run",
subtitle = "Ofv: @ofv, Eps shrink: @epsshk",
caption = "@dir",
tag = NULL,
log = NULL,
guide = TRUE,
facets,
.problem,
quiet
)
pred_vs_pred(
xpdb_s,
...,
.inorder = FALSE,
type = "pls",
title = "Population prediction comparison | @run",
subtitle = "Ofv: @ofv, Eps shrink: @epsshk",
caption = "@dir",
tag = NULL,
log = NULL,
guide = TRUE,
facets,
.problem,
quiet
)
Arguments
- xpdb_s
<
xpose_set
> object- ...
See <
two_set_dots
>- .inorder
See <
two_set_dots
>- type
Passed to
xplot_scatter
- title
Plot title
- subtitle
Plot subtitle
Plot caption
- tag
Plot tag
- log
Log scale covariate value?
- guide
Add guide line?
- facets
Additional facets
- .problem
Problem number
- quiet
Silence output
Examples
pheno_set %>%
ipred_vs_ipred(run5,run15)
#> Using data from $prob no.1
#> Filtering data by EVID == 0
#> `geom_smooth()` using formula = 'y ~ x'
#> `geom_smooth()` using formula = 'y ~ x'
pheno_set %>%
pred_vs_pred(run5,run15)
#> Using data from $prob no.1
#> Filtering data by EVID == 0
#> `geom_smooth()` using formula = 'y ~ x'
#> `geom_smooth()` using formula = 'y ~ x'