Skip to contents

For two models in an xpose_set, these functions are useful in comparing individual and population predictions

Usage

ipred_vs_ipred(
  xpdb_s,
  ...,
  .inorder = FALSE,
  type = "pls",
  title = "Individual prediction comparison | @run",
  subtitle = "Ofv: @ofv, Eps shrink: @epsshk",
  caption = "@dir",
  tag = NULL,
  log = NULL,
  guide = TRUE,
  facets,
  .problem,
  quiet
)

pred_vs_pred(
  xpdb_s,
  ...,
  .inorder = FALSE,
  type = "pls",
  title = "Population prediction comparison | @run",
  subtitle = "Ofv: @ofv, Eps shrink: @epsshk",
  caption = "@dir",
  tag = NULL,
  log = NULL,
  guide = TRUE,
  facets,
  .problem,
  quiet
)

Arguments

xpdb_s

<xpose_set> object

...

See <two_set_dots>

.inorder

See <two_set_dots>

type

Passed to xplot_scatter

title

Plot title

subtitle

Plot subtitle

caption

Plot caption

tag

Plot tag

log

Log scale covariate value?

guide

Add guide line?

facets

Additional facets

.problem

Problem number

quiet

Silence output

Value

The desired plot

Examples


pheno_set %>%
  ipred_vs_ipred(run5,run15)
#> Using data from $prob no.1
#> Filtering data by EVID == 0
#> `geom_smooth()` using formula = 'y ~ x'
#> `geom_smooth()` using formula = 'y ~ x'


pheno_set %>%
  pred_vs_pred(run5,run15)
#> Using data from $prob no.1
#> Filtering data by EVID == 0
#> `geom_smooth()` using formula = 'y ~ x'
#> `geom_smooth()` using formula = 'y ~ x'