Skip to contents

Add individual objective function to data

Usage

backfill_iofv(xpdb, .problem = NULL, .subprob = NULL, .label = "iOFV")

Arguments

xpdb

<xpose_data> or <xp_xtras> object

.problem

Problem number

.subprob

Subproblem number

.label

The name of the new column. iOFV is the default.

Value

<xp_xtras> object with new column in the data and a column with iofv var type.

Details

This function will only work for objects with software listed as nonmem, which has a phi file and with an OBJ column in that file.

Examples


xpdb_x %>%
  backfill_iofv() %>%
  list_vars()
#> List of available variables for problem no. 1
#>  - Subject identifier (id)               : ID
#>  - Dependent variable (dv)               : DV
#>  - Independent variable (idv)            : TIME
#>  - Dose amount (amt)                     : AMT
#>  - Event identifier (evid)               : EVID
#>  - Model typical predictions (pred)      : PRED
#>  - Model individual predictions (ipred)  : IPRED
#>  - Model parameter (param)               : KA, CL, V, ALAG1
#>  - Eta (eta)                             : ETA1, ETA2, ETA3
#>  - Individual OFV (iofv)                 : iOFV
#>  - Residuals (res)                       : CWRES, IWRES, RES, WRES
#>  - Categorical covariates (catcov)       : SEX [0], MED1 [0], MED2 [0]
#>  - Continuous covariates (contcov)       : CLCR, AGE, WT
#>  - Compartment amounts (a)               : A1, A2
#>  - Not attributed (na)                   : DOSE, SS, II, TAD, CPRED
#> List of available variables for problem no. 2
#>  - Subject identifier (id)               : ID
#>  - Dependent variable (dv)               : DV
#>  - Independent variable (idv)            : TIME
#>  - Dose amount (amt)                     : AMT
#>  - Event identifier (evid)               : EVID
#>  - Model individual predictions (ipred)  : IPRED
#>  - Not attributed (na)                   : DOSE, TAD, SEX, CLCR, AGE, WT