For piping, set is passed, but with S3 method transformations are applied to the focused xpdb object.
Usage
focus_xpdb(xpdb_s, ..., .add = FALSE)
unfocus_xpdb(xpdb_s)
focused_xpdbs(xpdb_s)
focus_function(xpdb_s, fn, ...)
focus_qapply(xpdb_s, fn, ..., .mods = everything())Arguments
- xpdb_s
- < - xpose_set> An xpose_set object
- ...
- < - dynamic-dots> One or more xpdb objects to focus on
- .add
- < - logical> Should the focus be added to the existing focus? (default:- FALSE)
- fn
- < - function> to apply to focused- xpose_dataobjects
- .mods
- < - tidyselect> Model names in set to quick-apply a function. See Details.
Details
While these functions are used internally, it is recognized that they may have value in user scripting. It is hoped these are self-explanatory, but the examples should address common uses.
Note: focus_qapply() (re)focuses as specified in .mods and then un-focuses all elements
of the set so should only be used in the case where a quick application
suffices. Otherwise, focusing with a sequence of focus_function calls
(or a monolithic single focus_function call with a custom function)
should be preferred.
Examples
# Select two xpdb objects to focus on
xpdb_set %>% focus_xpdb(mod2,fix1)
#> 
#> ── xpose_set object ────────────────────────────────────────────────────────────
#> • Number of models: 4
#> • Model labels: mod1, mod2, fix1, and fix2
#> • Number of relationships: 3
#> • Focused xpdb objects: mod2 and fix1
#> • Exposed properties: none
#> • Base model: none
# Add a focus
xpdb_set %>% focus_xpdb(mod2,fix1) %>% focus_xpdb(mod1, .add=TRUE)
#> 
#> ── xpose_set object ────────────────────────────────────────────────────────────
#> • Number of models: 4
#> • Model labels: mod1, mod2, fix1, and fix2
#> • Number of relationships: 3
#> • Focused xpdb objects: mod1, mod2, and fix1
#> • Exposed properties: none
#> • Base model: none
# Remove focus
xpdb_set %>% focus_xpdb(mod2,fix1) %>% focus_xpdb()
#> 
#> ── xpose_set object ────────────────────────────────────────────────────────────
#> • Number of models: 4
#> • Model labels: mod1, mod2, fix1, and fix2
#> • Number of relationships: 3
#> • Focused xpdb objects: none
#> • Exposed properties: none
#> • Base model: none
# Focus function and tidyselect
pheno_set %>%
  focus_xpdb(everything()) %>%
  # Add iOFV col and iofv type to all xpdbs in set
  focus_function(backfill_iofv) %>%
  # Show 1... can do all like this, too, but no need
  unfocus_xpdb() %>%
  select(run6) %>%
  {.[[1]]$xpdb} %>%
  list_vars()
#> List of available variables for problem no. 1
#>  - Subject identifier (id)               : ID
#>  - Dependent variable (dv)               : DV
#>  - Independent variable (idv)            : TIME
#>  - Dose amount (amt)                     : AMT
#>  - Event identifier (evid)               : EVID
#>  - Missing dependent variable (mdv)      : MDV
#>  - Model typical predictions (pred)      : PRED
#>  - Model individual predictions (ipred)  : IPRED
#>  - Eta (eta)                             : ETA1, ETA2
#>  - Individual OFV (iofv)                 : iOFV
#>  - Residuals (res)                       : IWRES, CWRES, NPDE, RES, WRES
#>  - Categorical covariates (catcov)       : APGR ('Apgar score') [10]
#>  - Continuous covariates (contcov)       : WT ('Weight', kg)
#>  - Not attributed (na)                   : IRES, CL, V, CRES
# Quick-apply version of previous example
pheno_set %>%
  focus_qapply(backfill_iofv) %>%
  select(run6) %>%
  {.[[1]]$xpdb} %>%
  list_vars()
#> List of available variables for problem no. 1
#>  - Subject identifier (id)               : ID
#>  - Dependent variable (dv)               : DV
#>  - Independent variable (idv)            : TIME
#>  - Dose amount (amt)                     : AMT
#>  - Event identifier (evid)               : EVID
#>  - Missing dependent variable (mdv)      : MDV
#>  - Model typical predictions (pred)      : PRED
#>  - Model individual predictions (ipred)  : IPRED
#>  - Eta (eta)                             : ETA1, ETA2
#>  - Individual OFV (iofv)                 : iOFV
#>  - Residuals (res)                       : IWRES, CWRES, NPDE, RES, WRES
#>  - Categorical covariates (catcov)       : APGR ('Apgar score') [10]
#>  - Continuous covariates (contcov)       : WT ('Weight', kg)
#>  - Not attributed (na)                   : IRES, CL, V, CRES
