Expose a model parameter of xpdb objects in an xpose_set
Arguments
- xpdb_s
<
xpose_set> An xpose_set object- ...
<
dynamic-dots> One or more parameter to expose, using selection rules fromadd_prm_association.- .problem
<
numeric> Problem number to apply this relationship.- .subprob
<
numeric> Problem number to apply this relationship.- .method
<
numeric> Problem number to apply this relationship.
Details
The parameter returned will be top-level, and to avoid conflicting
names will be prepended by .. (e.g., ..ome1). The selector
used to fetch the parameter will be used in this .. name. If
a better name is preferred, there are convenient renaming functions
from dplyr where needed.
When using parameter selectors, quotations should be used for more
complex names, like "OMEGA(1,1)", since these may be read incorrectly
otherwise.
The untransformed parameter is used for this exposure. The get_prm
call uses transform=FALSE.
Examples
pheno_set %>%
expose_param(the1) %>%
reshape_set()
#> # A tibble: 14 × 6
#> xpdb label parent base focus ..the1
#> <named list> <chr> <named list> <lgl> <lgl> <dbl>
#> 1 <xp_xtras> run3 <chr [1]> FALSE FALSE 0.00406
#> 2 <xp_xtras> run4 <chr [1]> FALSE FALSE 0.00688
#> 3 <xp_xtras> run5 <chr [1]> FALSE FALSE 0.00589
#> 4 <xp_xtras> run6 <chr [1]> FALSE FALSE 0.0068
#> 5 <xp_xtras> run10 <chr [1]> FALSE FALSE 0.00682
#> 6 <xp_xtras> run12 <chr [1]> FALSE FALSE 0.00671
#> 7 <xp_xtras> run11 <chr [1]> FALSE FALSE 0.00681
#> 8 <xp_xtras> run13 <chr [1]> FALSE FALSE 0.00681
#> 9 <xp_xtras> run7 <chr [1]> FALSE FALSE 0.00678
#> 10 <xp_xtras> run8 <chr [1]> FALSE FALSE 0.00711
#> 11 <xp_xtras> run9 <chr [1]> FALSE FALSE 0.00613
#> 12 <xp_xtras> run14 <chr [1]> FALSE FALSE 0.0073
#> 13 <xp_xtras> run15 <chr [1]> FALSE FALSE 0.00716
#> 14 <xp_xtras> run16 <chr [1]> FALSE FALSE 0.00481
pheno_set %>%
expose_param(RUVADD, "OMEGA(1,1)") %>%
reshape_set()
#> # A tibble: 14 × 7
#> xpdb label parent base focus ..RUVADD `..OMEGA(1,1)`
#> <named list> <chr> <named list> <lgl> <lgl> <dbl> <dbl>
#> 1 <xp_xtras> run3 <chr [1]> FALSE FALSE 8.35 1.69
#> 2 <xp_xtras> run4 <chr [1]> FALSE FALSE 3.07 0.608
#> 3 <xp_xtras> run5 <chr [1]> FALSE FALSE 2.8 0.198
#> 4 <xp_xtras> run6 <chr [1]> FALSE FALSE 2.86 0.239
#> 5 <xp_xtras> run10 <chr [1]> FALSE FALSE 2.87 0.243
#> 6 <xp_xtras> run12 <chr [1]> FALSE FALSE 2.87 0.232
#> 7 <xp_xtras> run11 <chr [1]> FALSE FALSE 2.86 0.237
#> 8 <xp_xtras> run13 <chr [1]> FALSE FALSE 2.87 0.228
#> 9 <xp_xtras> run7 <chr [1]> FALSE FALSE 2.28 0.254
#> 10 <xp_xtras> run8 <chr [1]> FALSE FALSE 2.78 0.0343
#> 11 <xp_xtras> run9 <chr [1]> FALSE FALSE 2.9 0.176
#> 12 <xp_xtras> run14 <chr [1]> FALSE FALSE 2.81 0.0387
#> 13 <xp_xtras> run15 <chr [1]> FALSE FALSE 2.86 0.0347
#> 14 <xp_xtras> run16 <chr [1]> FALSE FALSE 2.78 0.0404
# This function is useful for generating a model-building table
pheno_set %>%
# Determine longest lineage
select(all_of(xset_lineage(.))) %>%
# Select key variability parameters
expose_param(RUVADD, "OMEGA(1,1)") %>%
# Make sure all models have descriptions
focus_qapply(desc_from_comments) %>%
# Extract description
expose_property(descr) %>%
# Transform to tibble
reshape_set() # %>% pipe into other processing
#> # A tibble: 6 × 8
#> xpdb label parent base focus ..RUVADD `..OMEGA(1,1)` ..descr
#> <named list> <chr> <named list> <lgl> <lgl> <dbl> <dbl> <chr>
#> 1 <xp_xtras> run3 <chr [1]> FALSE FALSE 8.35 1.69 Simplest …
#> 2 <xp_xtras> run5 <chr [1]> FALSE FALSE 2.8 0.198 Updated v…
#> 3 <xp_xtras> run6 <chr [1]> FALSE FALSE 2.86 0.239 Final str…
#> 4 <xp_xtras> run9 <chr [1]> FALSE FALSE 2.9 0.176 Test WT o…
#> 5 <xp_xtras> run14 <chr [1]> FALSE FALSE 2.81 0.0387 Final cov…
#> 6 <xp_xtras> run15 <chr [1]> FALSE FALSE 2.86 0.0347 Covariate…
